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An internal guldance system determines the position and orlentatlon of a
moving object from the readings of mass accelerometers, gyroscopic pickups
of absolute angular veloclity, and from specified initial condltions [1 and 2Z].

If the components of an lnertial system have instrument errors and the
initial conditions are not given exactly, the coordinates and orlentation of
the object will be determined inaccurately. The dependence of that inaccu-
racy on the instrument errors and on the lnexactness of the initial condi-
tions is described by the error equations ['2] which comprise two groups of
differential equations and some algebralc relations.

Below, the error equations will be integrated for an object in Keplerian
motion,

1, We will introduce a right-handed system of rectangular coordinates
0,8n{ with origin at the center of the Earth and axes invariant. relative
to directions f om the center of the Earth to the fixed stars.

In this system of coordinates, the error equations of an inertial guldance
system have the form [ 2]

Do B BT IS An—28m x 55 4r x 232 (1.1)

d;:\ Am, 6r1 =0, Xr, or, = o6r + 6,

where r 1s the radius vector from the center of the Earth 0, to the point
0 of the obJect in which are located the sensitive masses of the accelero-
meters of the guidance system, &r 1s the change of thils radius vector, u
1s the product of the gravitational constant and the mass of the Earth, 8§,
is the error in orientation of the gyroscope platform of the inertial system,
An  are the instrument error of the accelerometers and am those of the
absolute angular veloclity meters, and &6r, 1s the total error in the coordi-
nates of the object as determined by the lnertial system.
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280 V.D. Andreev

If i1t 1s assumed that point 0 1s the cewuter of mass of the obJject, its
radius vector r appearing in Equation (1.1) will satisfy Equation

w =0 (1.2)

The major difficulty in the integration of system (1.1) is the first equa-
tion. When the obJect 1s in Keplerian motion, the corresponding homogeneous
equation can be transformed into the form

8 (Tm+2) =0 (1.3)

l.e. it turns out to be the variation of Equation (1.2) for Keplerian motion.
The general integral of Equation (1.2) containing six arbitrary constants is
known. On the basls of a well-known theorem of Poincaré [ 3], particular
solutions of the homogeneous equation (1.1) are obtained by differentiating
the general integral of Equation (1.2) with respect to the arbitrary con-
stants, thus enabling one to integrate the first equation in (1.1). In this
way Lur'e [4] has integrated the vector equation for the free fall of a par-
ticle in the cabin of a satellite; this equatlon differes from the first
equation in (1.1) only in the right-hand side.

We will introduce a trihedron 0,£’n‘{’ with the 0,£’n’ plane colnciding
with the plane of the object orblt. The direction of the ¢,(’-axis in the
normal to the orbit i1s such that, when looking from the end of this axis,
the object moves counterclockwise. The Keplerian motion (elliptical) of the
object in the plane of the orbit is determined [5] by Formulas

= v (t—1t)+ M, v=nphah E—esinE=M
(1.4)

+e)/(1—emE, o=v+ o0

=a(l —ecos M), tnl/p= V

¢
. 2w Iy (ke)
smE:—eg —smkM

where g 1is the semimajor axis, e 18 the eccentricity of the orbit, ¥,
Fr and v are, respectively, the mean, eccentric, and true anomalies,
is the mean angular velocity of the motion, ¢ 1s the angle between the
gtaxis and the radius-vector r , w 18 the angle between the g'-axis and
the direction of perigee, ?, 1s the time of passage through perligee, and
J, are Bessel functions.

Formulas (1.4) depend on four arbitrary constants: ¢,, e, ¢ and w .
The twc remsining constants must be included in the determination of the
orlentation of the orbital plane relative to the coordinate system 0,8n{

The relative position of the trihedrons 0,gn( and 0,£'n’¢’ can be stipu-
lated by the table of directlon cosines:
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% v v (1 5)
£ cos 3 0 sin 8

M sinasin3 | cosa | —sinacosB

g —cosasinB| sina | cosacosfB

Now

r=E§ 4 nm + &8
E=rcosocosB, 1 =r(cososina sinB -+ sin o cosa) (1.6)

§ =r(— cosocosa sin B 4 sin ¢ sina)
where g,'q,g are the base vectors along the axes.

Formulas (1.4) and (1.6) furnish the general integral of Equation (1.2)
depending on the arbitrary constants 1, e, a, @, @, 3. There 1s no loss of
generallty in assuming that

th=0, a=B=0 =0 =0 (1.7)
in order to simplify the following notation.

We will form the following linear combinations [4] of the derivatives of
the radius-vector r determined by Equations (1.4), (1.6)

__Or __1or - 1 ar Vi—e or
NW=5 2= 450 qs_—ae(l——e?)%—— aev 0Oty
(1.8)
1 or 1 or 1 or
9U="7a 9= —— 33 9 = 5o

where the constants are arbvitrary.

By p, we wlll denote the total derivative with respect to time of vector
Q. It 1s obvious that the vectors g, and p, form a system of particular
solutions of Equation (1.2).

We will now Introduce the orbital trihedron xyz whose z-axls 1s directed
along r and whose y-axls coincides with olg' . Then, the components gq,
and P, 1n this reference frame will be used to form the matrices 4 and 3
whose elements are

A = qivx, Aqg = g;ez, Az = pi*x, Ay = pirz (i=1,2,3,4)

Bii = Qiay, By = Pijavy (i=1,2) (1.9)

where X, ¥, 2 are the unit vectors along the respective axes.

When calculating the elements of matrices 4 and & , 1t is necessary to
bear in mind the relations

dq; dx dy dz
P=Gh w om0 = ox
(1.10)
T a? a(l—e? dr vea sin v
©, =0 = 1—821— r=——>7, O e P
v V re’ 1-4-ecosv dt Vl—-e2
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Projecting Equation (1.1) onto the orbital trihedron axes, we arrive at
two systems of scalar differential equations

" = — 0%, + 2, Z," = wy, + 74 (1= 8z, 23 = 8y)
2y’ = — QT — pz, /P + An, — 2Am;r* — Am,'r 1.11)
z, = wyzy + 2ux, / r* + An; + 2ro,Am,
Zy = Xy, &g = — pxy / r* + An, + 2Am,r" + Am,'r — oy Am,r
(¥s = 82) (1.12)

The elements of matrices 4 and p constitute a system of linearly inde-
pendent particular solutions of the homogeneous systems (1.11) and (1.12),
since the determinants of matrices 4. and B are the Wronskians of these
systems [4] and are nonzero

|[A]=—+*/2,|B|=vVI_ &

The general solution of the homogeneous system (1,11) and (1.12)" can now
be represented in the form

4 2
= AC; (i=1,23,9), = ) BiCy; (=56 (1.13)
=1 =1

Then the solution of the nonhomogeneous equation can be determined by the
method of variation of parameters. By introducing the matrices p = 4-! ,
¢ = B~ and changing back from x,, x,, x5 to b&x, by, 6z, we arrive at the
following expressions for the components &x, Sy, 8z, of vector &r in the
orbital trihedron:

4 t
8z =3 Ay [X [(An, — 2Amyr — Am,’r) Dy +
(1]

f==1

4
+ (An, + 2ro,Am,) Dyl dt + 3 D,,-°z,-°] (1.14)

=
4 [
82 =) Ay [{ l(An: — 28m,r* — Am;'r) Dy +
i=1 0

4
+ (An; + 2re,Am,) D] dt + _EIDi,-°z,~°]
1=

2 ¢ 3 o
8y =3 By [S (Any + 28m,r” + Amy'r — @yAm,r) Gudt + 3} Gi®ziu |

f=x1 ° j=1

The elements of matrices 4, 5 and D, ¢ appearing in (1.14) have been
calculated in [4]

On account of (1.7), they assume the form
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(1.15)
—3vt (1-+ecosv) 2-4ecosv .
A= """ App = —"1——sinv
n 2YV1i—¢ 27 | Fecosv
__24ecosv _ I
Am = mcos v, AM—- a
A21= L_Mﬂ_})—' Azg_—-‘—cosv, A23=Sinv, A2‘=0
a 21— e
r ro,
By = - cos v, By, = —-sin »
2(1 4+ ecosv) Vi—e e+ 2cosv-ecosto
D13= —_— D23=
vyi—e v 1-+ecosy
1 yi—& vt
D33=—v— —W(2+ecosv)51nv+1 (1 +ecosv)e
i . 24 ecosv
Dyg= —|—esin v —— ecosv]
“° v[ VI—e(l+ecoso) +( e’)“‘( + )
2esin v Vi—eé
Dy= e, Dy, = —-1—esinv
vV1i—g¢ v
1— et
D34=—1—-[—’-:‘&—e‘*sinv—--L (26 —cosv —ecos v)
v [1—e 14 ecos»
D 1 [ 3vi ecosv—l—e’cos’v-—z:l
“u= vl d—éy esinv - Vi—et (14 ecosv)
C __Yi—ésinv G, — Yi—etcosv
13 v(l+ecosv)® 227 y{d Fecosv)
For c¢p, (4,. we obtain Expressions
2
= 2 Du x: ’ C‘ijﬂ = 2 Gi,'°$°i+4 (1.16)

=1 i=1
The quantities Dyy°, Dy®, G15°, Gg° can be found from (1.15), if it 1is

assumed in the latter that ¢ = 0 and » = (0. The quantities D;° D,°
Gi,° [4] are equal to

Dp°=D,° =0, Dyp°=1, Dy =—(1—e)™"
Dy’ =2/(1—¢€), Dyp’=({1+e/(1—¢, Dy’ =D,"=0
G,’=1/(14¢€, G, ,°=0 (1.17)

In (1.16) we have, in accordance with (1.11), (1.12) and (1.10),
2,° = 06z2° x,° = 82°, 2° =62+ v (1 —e)82°
2° =082 —v (1 —e?)" 82° z,° =06y’ z,°= 6y (1.18)
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where 0z° 0y°, 6z° 6z°, 8y°°, 6z° are the initlal values of the variables
in question.

When e = 0, i.,e. for a circular orbit
r=a, =90, v=uw, V=uw0id 0;=0, o, =70

and Formulas (1.14%) reduce to those found in [6].

2. The solution of the second equation in (1.1) 1s obvious:
!
OI:SAmdt +6,° (2.1)
0
Projecting on the xyz-axes, i1t assumes [7] the form

v

t
Bi1x = ~sin0B(— Am, sin o + Am, cos o) dt + 612"] 4

0

+ coso [ (Am, cos o - Am, sin 0) dt - ﬂlxc}

=]

t

0, = S Amdt + 0,,° (2.2)
o
¢

0y = coso[ (— Amy sino + Am, cos o) dt + 61:°J +

1]
t

-+ sin O'[S (Amy cos o + Am, sin o) dt + 611."}

0

Formulas (2.2) determine the ¢.rors of orientation relative to the Eng-
trihedron. The errors of orlertaticn relative to the orbital trihedron can
be found from Equation

0, = ri6y, 0, = —r6z, 0, =0, (2.3)

where b6x and 6y are given by (1.14),

3. In Sections 1 and 2 we obtained the solutions for 6.2:, 6y, GZ, elx, 912!’
912 by quadratures. For orbits with small eccentricity and constant values
of Any, Any, An,, Am,, Amy,, Am; one can easily obtain the first terms
of the power serles expansions in e for the solutions of the flrst and
second equations in (1.1).

To the flrst order of accuracy in e 1t follows from the last eguation
in (1.4) that

sin £ = sin vt (1 4 e cos vt), cos EE = cosvt —esin? vt 3.1)

and from the fifth and sixth equations in (1.10) with the aid of (1.7) we
obtain
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(3.2)

v = vt -}~ 2esin vt

Error equations of an lnertial guldance system

r=a(l —ecoswt), oy = v (1 + 2e cosvit), 6=

sin ¢ = sin v = sin vt + esin 2v¢, C0S 6 = €03 v = 0S8 Vi — 2e sin® vt

Relations (3.1), (3.2) lead to the follcwing expressions for the elements
of the first two rows of matix 4 and the last two columns of matrix D :

A= —3/pvt (1 + ecos vt), Aig = 2 8in vt 4 3/se sin 2vt
Aiz=2cosvi—e(l + 3sin?vit), Any=1—ecoswvt

Ag =1 — e(cos vt -+ 3/yve sin vt), A2 = — cos vt + 2esin? vt
Ags = sin vt 4+ esin 2vt, Au=0

Dyg=2v-1(1 4 ecosvi), Dyy=2ev-lsin vt (3.3)

Dag =v"1(2 cos vt — 3esin?vt), Dy=v-Ysinvt 4 esin 2v¢)
Dgg = v71[— 2sin vt + e(3vt — 3/5sin 2v1)]

Djy = v71[cos vt 4 e (cos vt — 3 — sin? vt)],

Dy = vl [3vt -+ e {3vi cos vt — 2 sin v¢)]

Dy = v [— 24 3e (vt sin vt 4 cos vi)]

Similarly
By, = cosvi — e (1 4 sin® vt), By, = sin vt + 1/, e sin 2vt 3.4)
ok
Gy = — V71 (sin vt + Yze sin 2v1), Ggq = v [cos vt — e (1 4 sin? vt))

Let us substitute (3.3), (3.4) and (1.19) together with the initlal values
D,4°, G O of the elements of matrices ) and ¢ 1in Formulas (1.14). When
An,, An,,'An,, Am,, Am,,, Amz are constant we obtaln, after integration and

'y 2]
si’rcnpligications, the following expressions for 6x, by, 6z ¢

Oz = 8z®° < v7162° (4 sin vt — 3vi) -+ 60z° (sin vi — vt) + 2v182° (cos vi — 1) +
+ v72An, [—/(vt) + 4 (1 — cos vt)] + 4vTlaldm,, (sin vt — vi) 4 2v 2 An, (sin vt — vi) +-
-+ e [Anv2 (— 3/,v%2 cos vt — 5vi sin v¢ -+ cos vt — 1 + 6 sin® ve) <4
+ An,v=% (— 3vt — 5vt cos vt 4 7/, sin vt -+ 5/, sin 2vt — ,sin vt cos 2vi) -
+ 2Amav71 (— 6vt — 6v¢ cos vt + 1%/, sin vt - 3/, sin 2vt — 1/, sin v¢ cos 2vt) -+
-+ 82°°4 — cos vt) — 3v18z°" (vt |- Vi cos vt — sin 2vt) — 363° (5vt. - 2vt cos vi —
— 3/, 8in 2v¢ — 4 sin vt) 4 v16z% (1 4 cos? vt — 2 cos Vi)

8y = v2(An, — avAm,) (1 — cos ¥#) < 8y” cos vt  v10y* sin vt -
+ e [v'2An, (1 — cos vt + sin® ¥t — /vt sin vt) + vaAm, (cos vt — 1 — sin? vz
+ vt sin vt) - v laAm, (vt cos vt — sin v&) 4 8y° (cos vi — 1 — sin?® vi) 4
+ v 18y® (— sin vt + sin vt cos vi)] (3.5)
8z = 2v71 (2° 4 aAm,) (1 — cos vt} + 82° (4 — 3 cos vt) -+ v7182> sin vt 4
+ 2v72An, (vt — sin vt) - v~2An, (1 — cos vt} 4 e [An, v (— 3/,v22 sin vt —
— /vt cos vt + /, sin vt — 2 sin 2vt) + An,v"2 (— /vt sin vt 4+ 3 sin? vt —
— 2 — 2 cos vt — 1/, sin® v¢ cos vt} + 2aAm V71 (— 4vt sin vt -} 4 — 2/  cos vt
- 3 sin? vt -+ 5/, cos V¢ cos 2vt) + 2v18z° (1 — cos vt — 3/,vt sin vi) +
<+ 02° (— 6vt sin v¢ + 10 — 10 cos vt + 6 sin? v¢) + v162z°-(sin 2v¢ — 2 sin v?)]
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Similarly, from (2.2)

0, =0,,° cos vt — 0,,°sin vt v 1Am, sin vt — v-1Am, (1 — cos vt) 4
+ e [— 20,,° sin? vt — 6,,°sin 2v¢ + v 1Am, (vt $ 1Y, sin 2vt) — Y,v1 Am, (1 — cos 2vt)]

0,,=0,,° + Amyt (3.6)

8,, = 0,,°sin vt 4 0,,° cos vt -+ v 1Am, (1 — cos vt) + v1 Am, sin vt +
+ € [0,,°sin 2vt — 20, °sin? vt -+ 1/,v1Am, (1 — cos 2vt) + v~! Am, (vt 4 1/, sin 2vi)]

When e = 0, i.e. for a circular orbit, relations (3.5) and (3.6) reduce
to those obtained for this case in L[6].

From the last two equations in {1.1) we find the components of vector &r,
of the total error of determination of coordinates in the xyz reference
frame

Say = bz + 0O, Syy = by — 0,1, 8z, = 8z 3.7

and from {2.3) the error of orlentation of the object relative te the orbital
trihedron.

4. The preceding consideration was related to a self-contained inertial
system with three mass accelerometers. Now we can consider the case where
the 1lnertlal system also makes use of signals from an external source on the
magnitude T of the distance of the obJect from the Earth's center. Two
different methods of using this additional information are of interest [2].

In the first of these methods all three mass accelerometers are retained
in the system, but the term u/}a in the equations for the unperturbed opera-
tion contains r which is supplied by the additional source of information.
As far as the error equations are concerned, this variant differs from that
considered in Sections 1 to 3 in that the first equation in (1.1) assumes the

) . d dA 3prA
+E;—:—:An——ZAmx—d;—+rxTT+—%i (4.1)

form d26r

di?
where Ar now denotes the error in the value of » transmitted to the iner-
tial system.

In the second method, only two mass accelerometers are used in the system.
The value of r transmitted to the system can be used to eliminate one of
the variables from the equations for the unperturbed operation. If, in the
unperturbed state, the trihedron of the inertial sysfem, along which are
situated the mass accelerometers, coincides with the orbital trihedron xyz,
then the system will be without the mass accelerometer n, along the z-axis.
Thus, the three second order scalar equations corresponding to the first
equation in (1.1) will reduce to two obtalned by projecting onto the x- and
-axes (4.2)

6z + (u /,r® — 0y®) 0z = Any — 2Amyr® — Amyr— oy° Ar — 20,Ar"
Sy + W/ rd) 8y = Any + 2Am, " + Amy'r — @y Am,r
The homogeneous equations corresponding to (%.1) and (%.2) have variable

coefficients, as was the case with Equation (1.1). On the other hand, con-
trary to Equation (1.1), Equations (4.1) and (4.2) will not be the equations
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for the variations of the Keplerian motion (1.2). Thus, Poincaré's theorem
can not be employed in order to search for the solutions of Equations {(4.1)

and (4.2). Nevertheless, the general solution of these equations can be
constructed.

Let us consider Equations (4.2). The second equation coincides with sys-

tem (1.12). The last formula in (1.1%) and the second formula (3.5) will be
its solutilon.

In order to construct the solution of the first equation, we note that
6z =r/a, 8z = 0 1s one of the particular solutions of system (1.11).
Comparing the first equation in (4.2) with the projection on the x-axis of
the first equation in (1.1), we come to the conclusion that

bz =r/a (4.3)

will be a particular solution of the homogeneous equation (4.2), as can be
verified by direct substitution.

In order to find the second particular solution, we can now make use of
the Ostrogradskii-Liouville formula, which yields

t
bz = _;_S-;‘Q dt (4.4)
[1]

From the fifth equatlion in (1.10) we have a2/ 72 = v/ (W/'1T — €). on
account of this relation, (4.4) assumes the form

8 — ry
av Wfi——e’

The solutions (4.3) and (4.5) are linearly independent. The Wronskian of
these solutions 1s equal to unity. Thus, the general solution of the homo-
geneous equation corresponding to the first one in (4.2) has the form

(4.5)

ro
av Y1 —¢
The general solution of the nonhomogeneous equation can now be obtained

by varying the parameters (¢, and (, . By virtue of the lnitial condltions
(1.18), this solution is found in the form
t
r 1 ) . .
Sz = —[_— Srv (Ang-— 2Amyr® — Amy'r — @*yAr —
al avVi=e p (4.7)

8z =C, - + C, (4-6)
a

t
0 1 L]
— 20,Ar") dt + 16ie]+,w e [—a—gr(Anx—2Am,,r —

— Amyr— 0y Ar —20,Ar) dt + (1 — €) 2]

When the instrument errors are constant and the eccentricity of the orbit
is small, we obtain from (4.7) the following approximate formulas analogous
to those in (3.5):
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Oz = 13 An 1% + 62° 4 8z°t 4 e [An, V% (— V22 cos vt < 2Vt sin vt 4 3 cos V¢ — 3) +-
+ 2v71 (adm, — vAr) (sin vt — vt) + 62° (1 — cosvt) 4 v™18z™ (2 sin vt — vt — vt cos vi)]
(4.8)

When e = O, Formula (4.8) reduces to that obtained in (6] for this case.

5. A more complicated problem 1s posed by the integration of Equation
(&.1); 1ts projection onto the xyz-axes leads to the system

8z + (u/ P —aw?) bz + o) 62 + 20,82° = Any — 2Amyr® — Am,,'r5 .
82 + (/P — o) 8z — 0,0z — 20,62° = An; + 2royAmy + 3pAr(/ r'?’
and to Equation
Sy + ur-38y = Any 4 2Am.r’ + Ami'r — wyAm,r (5.2)
Equation (5.2) colincides with the second equation in (4.2), and the prob-
lem thus reduces to that of solving (5.1).
The homogeneous system of equations (5.1) has two particular solutlons
Sz =rla 8z=0, 6z =0, 8z=r/a (5.3)

This enables one to reduce 1t to second order by making the change of
variables

bz = = Spdt, 6z = -;—Sth (5.4)

a

The equations for P and g have the form

P2l p+29=0  gH+2lg—20p=0 (55
r r

Introducing the complex variable uy =p + 1¢ , we are led to a first-order
equation for u

'+ 2u (’T — iay) = 0 (5.6)

which can be directly integrated. The general solution of this equation is

given by the function c .
U= - (cos 2v + i sin 29) 5.7

where (¢ 1s a complex constant.

Changing back again to the variables 6x, 6z and thereby making use of
(4.6), we obtaln the following two particular solutions of system (5.1)

ro.
Sz = —-sin 2v, 6z _—.-Z—cos 2v
r ro.
6z = — - €08 2v, 0z = —-sin 2v (5.8)
Expressions (5.8) and (5.3) constitute a system of four particular solu-

tlions of Equations (5.1).(*) (Please find Footnote on opposite page).

Now we will construct a matrix o from the particular solutions (5.3) and
(5.8) and their derivatives, the latter beilng related by virtue of the fifth
and seventh equations in (1.10).

The elements of matrix o are
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r ro. r
%y = oy = 0, a3 = —-sin 2v, oy =-—-cos2v (5.9}
r r ro.
Ogp = 0,  Ogy =—, Qyg=——0C0827, Gy = —-sin2v
ve . . 2av Y1 —et
Ogy Vi sin v, Ogq = Viee sin v sin 2» - —1—/;—*- cos 2v
ve . 2av Y1 —e* .
g, = 0, ay = smvcos2v———K——sm2v
32 34 Vi—e r
ve . 2av Y1 —e2 .
ag =0, ag=— Vi sin v cos 2v - 1/—sm 2v
. ve . . ve . . 2av V1i—et
Oy = Vi sin v Qg = T sin v sin 2v 4 ———————¢os 2v

The determinant of this matrix 1s the Wronskian of the obtained system of
particular solutions.

If we reduce the homogeneous system (5.1) to the Cauchy form, the matrix
of the right-hand sides will not contain dlagonal elements, as was the case
with Equations (1.11). Therefore, 1t follows from the well-known theorem of
Ostrogradskii-Liouville that the Wronsklan 1s constant. It suffices to cal-
culate its value at ¢ = O . Since then v = 0 , 1t immediately follows from

(5.9) that |a|=4v? (1 — €®) == 0.

Thus, the above partlcular solutions of the homogeneous system of eguatlons
(5.1) are linearly independent; the general solution of the homogeneous system

*) The particular solutions (5.3) of Eguations (5.1) have been found by
first comparing systems (5.1) and (1.11) and then selecting from the parti-
cular solutions of the latter. While reviewing the manuscript of thils paper,
Lur'e pointed out a direct method of obtalning the general solutlon of the
homogenecus vector equation (’4.1).

From (1.2) and the homogeneous equations (4.1) 1t follows that

" XOr 8" Xr=("X8r4 0 xr)=0
rxér+8rXr=a (a is a constant vector)
where the dots now indicate total time derivatives. Whence one filnds
r'r2 —8rr - =1rbr’ . r--r XxXa—rr-dr 1)
Moreover, from (1.2) and (4.1)
r-6r"—r’-6r=0, r-08r—r . 8r=c=const
Substitution into (1) yields (note that r-r =rr)
Or'r2 —8rrr =0r X (r Xr)4er4-rxa
But r X r'==r2v"y., Therefore, we arrive at Equation
o' —O6rr' fr vy X 8r=(cr-r x a)/r?
which is equivalent to Equatilons

02"+ idz") — (r* ) r — 2i0") Bz + iB2) = (c —ia) /7, Sy —odyr'/r=a,/r
Integration ylelds '
8z + 18z == (1 + ico) re™2? 4 (¢ —ia,) [ 2irty’, Sy=csr +a/rv

The solution so obtained contains all six parameters (c, Qs Px0 Ol C2 c3).
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will be . .
6z = 2 Ciau, 8z = 2 C{azi (510)
i=1 i=1
The general solution of the nonhomogeneous system will be found by the

method of variatlon of parameters. Assuming that the C, are time dependent,
they will be determined by Equations

4
Ci' () ay =0, gwm%=o

Nl EM“

Ci () g = Any — 2Amyr® — Amy'r (5.11)

=y

A
Ci () ay = An, + 2rAmyw, + 3u r—:

™M §

[

The elements of the matrix 8 = g~! are found to be

a esin v r 1
= = —-—— =0’ T e — e
11 - ' 812 2(1—8’), BIS BM 2 2y V-1—-—_ez
esinv a r 1
BZI‘— 2(1——82)’ 322"‘ r7 923_ _a_'z—v-—l/'T—_z-—eTv 324—‘0
B =_esinvcost 8 __esinvsinZv Bys — r  cos2v
31 2(1—62) ’ 32 2(1-—-8’) ) 33 — a 9y Vt_—?
B __ T _ sin2» B __esinvsin2v 8 __ __esinvcos2v
M T wyVioe M 2a—e) 4 2(1 — )
8 __r sin 2» B _ T cos 2_12_ 5
“ a2vVi—e' e T wyYi—e (9.12)

With the aid of matrix g , the expressions for ¢, (t) can be obtalned in
the form t

Ci (t) = S [Bis (Ans — 2Amyr* — Amy'r) + (5.13)

0
+ Big (An, 4 2royAmy + 3pAr/ r¥)] dt 4 Ci°

In order to obtailn the solution of Equations (5.1), one must now substi-
tute (5.13) into (5.10), after having determined the ¢,° in agreement with
the initial conditions. This yields

Py t
6z = 3 oy {S [Bis (Any — 2Amyr — Amy'r) + (5.14)
0

i=1

+ B (Bn, + 2royAmy + SuAr [ r3)) dt + Cf}

4 t
8z= D) oty {g [Bis (Any — 2Amyr® — Amy'r) +
i=1

(1]

+ B (Ars + 2royAmy + 3uAr /9] dt + c¢°}
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where

o O2°  82%(1—e) C.o = §z° 8z°° (1 —e)
G = 1—e wVi—é’ P e +2VV1—8’ (5.15)
(o N PO il (B
Cs 2wyi—e '’

= nviee

When the orbit eccentricity is small, (3.2) can be used to give the fol-
lowing first order expressions

ay;=1—ecosvt, a,=0,

@3 = sin 2vt 4- e sin vt (3 cos 2vt — 1)
0y4 = c0S 2v¢ — ¢ (3 sin v¢ sin 2vt + cos Vi),
Ogq = 1 — e cos vz,

ag =0
Qyy = — €0s 2vt -+ e (3 sin vi sin 2v¢ 4- cos vt)
Oy4 == sin 2vt -+ e sin vt (3 cos 2vi — 1)
Bis=0, Bra=—1wv1(1—ecosvt), Pyg=v1(l —ecosvt), Pau=0
Bag = Yyv! [cos 2vt — e (3 sin vt sin 2vt - cos vi)] (5.16)
Psa = 1/yv1 [sin 2vt 4- e sin vt (3 cos 2vt — 1)}
Bag = — Ygv! [sin 2vt 4 e sin vt (3 cos 2vt — 1)]
Bag = Yyv7! [cos 2vi — e (3 sin V¢ sin 2v¢ 4 cos vt)]
Ci°= (14 ¢) 6z° —Yv1 (1 —¢) 82,

Ci°=(1+ ¢ 6z° 4 1/gv1 (1 — ¢) 82
Co® =Yv1 (4 —e) 82™, CP2=1yv1(1l —e¢) 62>

If it 1s assumed that the instrument errors are constant, substitution of
(5&16) into (5.14) and integration leads to the following expressions for &x
an bzt

8z = 1Y 2An, (1 — cos 2vt) + (1/v-2An, + %4 Ar) (sin 2vt — 2vt) +
+ 82° 4 1/,v-182%sin 2vt + 1/;v1027 (cos 2ve — 1) + e [Ygv-3An, (— S/ cos Vi 4
+ 2 cos 2vt — 3/, cos 3vi) + /3 v2An, (vt cos vt -+ 3/, sin vt — 2 sin 2v 4 3/¢sin 3ve) 4

+ 5/sv2aAm,, (— 2 sin vt + sin 2vt) 4 Ar (*/yvt cos vt — 38/ sin vt -+ ¥/g sin 3vt) -
4+ 82° (1 — cos vt) + 1/;v-18z% (1 — cos 2vt — 3 sin vt sin 2vt) 4+

4 Yyv182% (— sin vt — sin 2v¢ < 3 sin vt cos 2vt)]
8z = 1w 2An_ (2vt — sin 2vi) 4 (Y v2An, > 3/,Ar) (1 — cos 2vt) + 6z° 4+
4 v 182% (1 — cos 2vt) + Y/,v~182% sin 2vt + ¢ [Ygv 2 Any, (— vi cos v¢ — 3/, sin v¢ +
-+ 2'sin 2vt — 8/, sin 3ve) + v 2An, (— 5/, cos vt 4~ 2 cos 2vt — 3/, cos 3vt)
+ v lalm, (— 1 ¥ %/3 cos vt — 5/g cos 2vt + /g cos 3vt) 4+ #/gAr (cos vt — cos 3vi) +-

3 62° (1 — cos vt) $ Yyv18z% (— 1 4 cos 2v¢ 4 3 sin v sin 2ve) 4
4+ 1/4v182°° (— sin 2v¢ — sin v¢ + 3 sin v cos 2vi))

The author is grateful to A.Il.Lur'e for readlng the manuscript and for
useful suggestions.
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